The Last Frontier

At the bottom of the world, Antarctica sits as if another planet. The brutal conditions of the frozen continent leave it mostly barren.

Antarctica, though, is a natural laboratory for scientific discovery, and researchers at The University of Alabama are playing critical roles in global efforts to use Antarctica to understand the Earth’s geology, past, climate and biological diversity and to get a better grasp on the cosmos.

scientists on a research vessel outside Antarctica
On a research vessel outside Antarctica, UA researchers Dr. Rebecca Totten Minzoni, center at table, and Victoria Fitzgerald, back, plan surveys and core drilling sites with Dr. Alastair Graham of the University of Central Florida and Dr. Robert Larter of British Antarctic Survey. (Photo credit: Linda Welzenbach, Rice University)

“To me, it feels very pure because it’s virtually untouched by humans,” says Dr. Rebecca Totten Minzoni, a marine geologist and paleontologist at UA.

Totten Minzoni is one of several UA scientists and engineers who have done field work in and around Antarctica the past few years. Their inventive work is moving knowledge forward and enhancing the education of UA students.

She was part of an expedition just offshore of Antarctica to study what many scientists are hoping to resolve: Antarctica’s contribution to sea level. The research project involving over 100 international scientists is one of the most detailed and extensive examinations of the massive Thwaites Glacier, which accounts for about 4 percent of global sea-level rise today — an amount that has doubled since the  mid-1990s.

She uses her expertise in finding microscopic clues to the past behavior of Thwaites Glacier, searching through mud offshore of the glacier for tiny, single-celled plankton. Through analyzing what the glacier and ocean left behind, her team can inform models of how the glacier will behave in the future.

“Antarctica has a really important role to play in the climate system, for better or worse, and we need to understand how it’s changing in both long timescales as well as shorter timescales,” Totten Minzoni said.

4 researchers lower an orange equipment box into a hole in the snow and ice
Researchers lower seismic equipment into place at one of the stations as part of research into the Transantarctic Mountains (Photo Credit: Lindsey Kenyon.)

Along with what Antarctica can reveal about how the Earth will respond to climate change, there is more to learn about the continent itself. Dr. Samantha Hansen, a UA geologist, oversaw a study of the Transantarctic Mountains that showed a layer of heated earth just below portions of Antarctica are pushing the mountains up from the ground.

“Antarctica is arguably the last frontier in that we know very little about that continent,” she said.

Hansen and students in her UA lab, which focuses on earthquake seismology, deployed a seismic network during four trips that collected data for three years. Similar to a medical scan of the body, the 15 stations in the network buried in Antarctica used seismic waves created by earthquakes from around the globe to create an image of the Earth below the mountains.

The seismic images reveal areas where the Earth’s crust is thin around the mountains, creating shallow spots where the next deepest layer, the hotter mantle, is closer to the surface.

“It’s interesting being some place where there are no trees and no animals, no people and no houses,” Hansen said. “Some of the sites we’ve visited … no other human had ever been to before. That’s pretty cool, especially in this day and age, going someplace that you are the first human beings to be there.”

Antarctica and its coastal waters can also reveal much about life now. Dr. Kevin Kocot, a UA zoologist, will travel to the continent twice as part of a study using cutting edge techniques to speed up identification of new species of a group of worm-like mollusks, while also training the next generation of scientists studying invertebrates.

Two expeditions over the next four years aim to find new species of aplacophorans and use advanced imaging and DNA sequencing techniques to identify and classify them. Aplacophorans are diverse and ecologically important in the deep sea and polar regions, but few researchers study them. “Antarctica is changing more quickly than anywhere else in the world,” Kocot said. “Conserving the deep sea and polar regions is really important even if people don’t see it. Having this baseline of what lives there, and having more people who can do that in the future is really important.”

IceCube Neutrino Observatory
IceCube lab in Antarctica

Along with geologists and biologists, two astronomers at UA are members of a team using Antarctica to peer into the universe and learn more about a curious particle. Drs. Dawn Williams and Marcos Santander play a critical role in the IceCube Neutrino Observatory, an array of 5,160 basketball-sized optical sensors deeply encased within a cubic kilometer of clear Antarctic ice.

The observatory was set up to detect neutrinos, abundant subatomic particles famous for passing through anything and everything, rarely interacting with matter. The project found evidence of the source of neutrinos, a discovery that opens the door to using these particles to observe the universe.

“IceCube is looking for light from neutrinos interacting in the ice, and the ice at the South Pole has excellent optical transparency,” Williams said. “Light from a high energy neutrino interaction can travel for hundreds of meters in ice, which means we can space the sensors fairly far apart, which reduces drilling costs.”

She is part of an international effort to upgrade the massive cosmic particle detector, coordinating enhancements to its calibration, and she will likely travel again to the frozen continent.

Learn more about research in Antarctica by reading the full article on the UA News site.